Realising potential

A-level Chemistry Summer Homework: Transition activities

The following activities cover some of the key skills from GCSE science that are relevant at A-level. They include the vocabulary used when working scientifically, and some maths and writing skills.

You must complete these activities before you start A-level chemistry in September and have them ready to hand to your new teacher in your first lesson.

The activities are not a test. Try the activities first and see what you remember, and then use textbooks or other resources to answer the questions. Don't just go to Google for the answers! Actively engaging with your notes and resources from GCSE will make this learning experience more worthwhile. You will have a solid head-start to A-level chemistry, because you will be able to retrieve the knowledge and skills if the work has come from you!

Using maths skills

Throughout A-level Chemistry you will need to be able to use maths skills you developed in GCSE Chemistry and GCSE maths, such as using standard form, rounding correctly and quoting your answer to an appropriate number of significant figures.

Activity 1 Using maths skills

1. Write the following numbers in standard form:
a. 4000
b. 1000000
c. 16001
d. 12.45
2. Zinc oxide can be produced as nanoparticles. A nanoparticle of zinc oxide is a cube of side 82 nm .
$1 \mathrm{~nm}=10^{-9} \mathrm{~m}$
Calculate the surface area of a nanoparticle of zinc oxide. Give your answer in standard form.

3. Express the following numbers to 3 significant figures:
a. 57658
b. 0.045346
c. 0.001000
d. 2.03988×10^{-4}
4. Make the bracketed symbol after each equation the subject of the equation, e.g. in question (a), write the equation in the form: $\lambda=$
(a) $\mathrm{c}=\mathrm{f} \lambda$
(λ)
(b) $\mathrm{c}=\frac{\mathrm{n}}{\mathrm{V}}$
(c) $q=m c \Delta T$
(d) $\mathrm{n}=\mathrm{Cx} \frac{\mathrm{V}}{1000}$
(e) $\mathrm{n}=\mathrm{c} \times \frac{\mathrm{V}}{1000}$
(c)
(f) $\mathrm{E}=\mathrm{hf}$
(h)
(g) $\Delta G=\Delta H-T \Delta S$
($\Delta \mathrm{S}$)

Using the periodic table

During A-level Chemistry you will need to become familiar with the periodic table of the elements and be able to use information from the table to answer questions.

Here is a copy of the periodic table that you will be given to use in your exams.

1. Give the atomic number of:
a. Osmium
b. Lead
c. Sodium
d. Chlorine
2. Give the relative atomic mass $\left(A_{r}\right)$ of:
a. Helium
b. Francium
c. Barium
d. Oxygen
3. What is the number of neutrons in each of the following elements?
a. Fluorine
b. Beryllium
c. Gold

Activity 3 Formulae of common compounds

Give the formulae of the following compounds:

1. Methane
2. Nitric acid
3. Sulfuric acid
4. Ethane
5. Potassium manganate (VII)
6. Ethene
7. Water
8. Ethanol
9. Ammonia
10. Phosphoric acid

Activity 4 lons and ionic compounds

The table below lists the formulae of some common ions.

Positive ions		Negative ions			
Name	Formula	Name	Formula		
Aluminium	Al^{3+}	Bromide	Br^{-}		
Ammonium	$\mathrm{NH}_{4}{ }^{+}$	Carbonate	$\mathrm{CO}_{3}{ }^{2-}$		
Barium	Ba^{2+}	Chloride	Cl^{-}		
Calcium	Ca^{2+}	Fluoride	F^{-}		
Copper(II)	Cu^{2+}	Iodide	I^{-}		
Hydrogen	H^{+}	Hydroxide	OH^{-}		
Iron(II)	Fe^{2+}	Nitrate	$\mathrm{NO}_{3}{ }^{-}$		
Iron(III)	Fe^{3+}	Oxide	O^{2-}		
Lead	Pb^{2+}	Sulfate	$\mathrm{SO}_{4}{ }^{2-}$		
Lithium	Li^{+}	Sulfide	S^{2-}		
Magnesium	Mg^{2+}				
Potassium	K^{+}				
Silver	Ag^{+}				
Sodium	Na^{+}				
Zinc	Zn^{2+}				

Use the table to write the formulae for the following ionic compounds.

1. Magnesium bromide
2. Barium oxide
3. Zinc chloride
4. Ammonium chloride
5. Ammonium carbonate
6. Aluminium bromide
7. Calcium nitrate
8. Iron (II) sulfate
9. Iron (III) sulfate

Activity 5 Balancing equations

1. Write balanced symbol equations for the following reactions, using the information on the previous pages to work out the formulae of the compounds. Remember some of the elements may be diatomic molecules.
a. Aluminium + oxygen \rightarrow aluminium oxide
b. Methane + oxygen \rightarrow carbon dioxide + water
c. Calcium carbonate + hydrochloric acid \rightarrow calcium chloride + water + carbon dioxide
2. Chalcopyrite is an important copper ore mineral with formula CuFeS_{2}. Copper can be produced from rock that contains CuFeS_{2} in two stages.

Balance the equations for the two stages in this process.
Hint: remember that fractions can be used to balance equations.
Stage 1: $\quad \mathrm{CuFeS}_{2}+\mathrm{O}_{2}+\mathrm{SiO}_{2} \rightarrow \mathrm{Cu}_{2} \mathrm{~S}+\mathrm{Cu}_{2} \mathrm{O}+\mathrm{SO}_{2}+\mathrm{FeSiO}$
Stage 2: $\quad \mathrm{Cu}_{2} \mathrm{~S}+\mathrm{CuO} \rightarrow \mathrm{Cu}+\mathrm{SO}_{2}$
3. Balance the following equations:
a. $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{S}_{8}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}$
c. $\mathrm{HgO} \rightarrow \mathrm{Hg}+\mathrm{O}_{2}$
d. $\mathrm{Zn}+\mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
e. $\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\mathrm{H}_{2}$
f. $\mathrm{C}_{10} \mathrm{H}_{16}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}+\mathrm{HCl}$
g. $\mathrm{Fe}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$
h. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
i. $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \rightarrow \mathrm{Fe}+\mathrm{H}_{2} \mathrm{O}$
j. $\mathrm{Al}+\mathrm{FeO} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Fe}$

Activity 6 Moles

The amount of a substance is measured in moles. The mass of one mole of a substance in grams is numerically equal to the relative formula mass of the substance. One mole of a substance contains the same number of particles - atoms, molecules or ions - as one mole of any other substance. The number of atoms, molecules or ions in a mole of a given substance is the Avogadro constant. The value of the Avogadro constant is 6.02×10^{23} particles per mole. Add your formulas to help you here

1. Complete the table. Use the periodic table to help you.

Substance	Mass of substance in grams	Amount in moles	Number of particles
Helium			18.12×10^{23}
Chlorine (Cl)	14.2		
Methane		4	
Sulfuric acid	4.905		

2. Answer the following questions on moles.
a) How many moles of phosphorus pentoxide $\left(\mathrm{P}_{4} \mathrm{O}_{10}\right)$ are in 85.2 g ?
b) How many moles of potassium are in 73.56 g of potassium chlorate $(\mathrm{V})\left(\mathrm{KClO}_{3}\right)$?
c) How many moles of water are in 249.6 g of hydrated copper(II) sulfate $\left(\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}\right)$? For this one, you need to be aware the dot followed by $5 \mathrm{H}_{2} \mathrm{O}$ means that the molecule comes with 5 water molecules, so these have to be counted in as part of the formula mass.
d) What is the mass of 0.125 moles of tin sulfate $\left(\mathrm{SnSO}_{4}\right)$?
e) If I have 2.4 g of magnesium, how many g of oxygen $\left(\mathrm{O}_{2}\right)$ will I need to react completely with the magnesium? $2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow \mathrm{MgO}$
3. Answer the following questions.
a) What is the concentration (in mol dm ${ }^{-3}$) of 9.53 g of magnesium chloride $\left(\mathrm{MgCl}_{2}\right)$ dissolved in $100 \mathrm{~cm}^{3}$ of water?
b) What is the concentration (in mol dm ${ }^{-3}$) of 13.248 g of lead nitrate $\left(\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\right)$ dissolved in $2 \mathrm{dm}^{3}$ of
water?
c) If I add $100 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{3} \mathrm{HCl}$ to $1.9 \mathrm{dm}^{3}$ of water, what is the concentration of the new solution?
d) What mass of silver is present in $100 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ silver nitrate $\left(\mathrm{AgNO}_{3}\right)$?
e) The Dead Sea, between Jordan and Israel, contains $0.0526 \mathrm{~mol} \mathrm{dm}^{-3}$ of Bromide ions (Br). What mass of bromide ions is in $1 \mathrm{dm}^{3}$ of Dead Sea water?

Extended writing

Name
The ability to write coherently in a logical, well-structured way is an essential skill to develop. At GCSE the 6-mark extended response questions are used so students can demonstrate this skill. At A-level you will still need to write precise answers using precise scientific language.

The command word in a question, like at GCSE, is important as it gives you an indication of what to include in your answers. For example, 'explain' means you must give scientific reasons why things are happening, not just a description. A comparison needs advantages and disadvantages, or points for and against.

Activity 7 Types of bonding extended response question

Compare the similarities and differences between ionic, covalent, and metallic bonding. Do not bullet-point your answer. Ensure your response is communicated coherently and in a logical order.
\qquad

Continue on separate paper if you need to...

